Variable Selection in Time Series Forecasting Using Random Forests

نویسندگان

  • Hristos Tyralis
  • Georgia Papacharalampous
چکیده

Time series forecasting using machine learning algorithms has gained popularity recently. Random forest is a machine learning algorithm implemented in time series forecasting; however, most of its forecasting properties have remained unexplored. Here we focus on assessing the performance of random forests in one-step forecasting using two large datasets of short time series with the aim to suggest an optimal set of predictor variables. Furthermore, we compare its performance to benchmarking methods. The first dataset is composed by 16,000 simulated time series from a variety of Autoregressive Fractionally Integrated Moving Average (ARFIMA) models. The second dataset consists of 135 mean annual temperature time series. The highest predictive performance of RF is observed when using a low number of recent lagged predictor variables. This outcome could be useful in relevant future applications, with the prospect to achieve higher predictive accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Random Forests to Select Optimal Input Variables for Short-Term Wind Speed Forecasting Models

Achieving relatively high-accuracy short-term wind speed forecasting estimates is a precondition for the construction and grid-connected operation of wind power forecasting systems for wind farms. Currently, most research is focused on the structure of forecasting models and does not consider the selection of input variables, which can have significant impacts on forecasting performance. This p...

متن کامل

A Time-Series Water Level Forecasting Model Based on Imputation and Variable Selection Method

Reservoirs are important for households and impact the national economy. This paper proposed a time-series forecasting model based on estimating a missing value followed by variable selection to forecast the reservoir's water level. This study collected data from the Taiwan Shimen Reservoir as well as daily atmospheric data from 2008 to 2015. The two datasets are concatenated into an integrated...

متن کامل

Statistical Uncertainty Estimation Using Random Forests and Its Application to Drought Forecast

Drought is part of natural climate variability and ranks the first natural disaster in the world. Drought forecasting plays an important role in mitigating impacts on agriculture and water resources. In this study, a drought forecast model based on the random forest method is proposed to predict the time series of monthly standardized precipitation index SPI . We demonstrate model application b...

متن کامل

Analysis of a bias effect in a tree-based variable impor- tance measure

The research in the field of data mining has widely addressed the problem of variable selection and several variable importance measures have been proposed in the literature. This paper deals with a frequently used variable importance measure defined in the context of decision trees and tree-based ensemble models like Random Forests and Treeboost. The aim of this paper is to show the existence ...

متن کامل

Optimal Subset Selection of Time-Series MODIS Images and Sample Data Transfer with Random Forests for Supervised Classification Modelling

Nowadays, various time-series Earth Observation data with multiple bands are freely available, such as Moderate Resolution Imaging Spectroradiometer (MODIS) datasets including 8-day composites from NASA, and 10-day composites from the Canada Centre for Remote Sensing (CCRS). It is challenging to efficiently use these time-series MODIS datasets for long-term environmental monitoring due to their...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Algorithms

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017